COMPLEX*16 or DOUBLE COMPLEX routines for trapezoidal matrix
ztzrqf
USAGE:
tau, info, a = NumRu::Lapack.ztzrqf( a, [:usage => usage, :help => help])
FORTRAN MANUAL
SUBROUTINE ZTZRQF( M, N, A, LDA, TAU, INFO )
* Purpose
* =======
*
* This routine is deprecated and has been replaced by routine ZTZRZF.
*
* ZTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
* to upper triangular form by means of unitary transformations.
*
* The upper trapezoidal matrix A is factored as
*
* A = ( R 0 ) * Z,
*
* where Z is an N-by-N unitary matrix and R is an M-by-M upper
* triangular matrix.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= M.
*
* A (input/output) COMPLEX*16 array, dimension (LDA,N)
* On entry, the leading M-by-N upper trapezoidal part of the
* array A must contain the matrix to be factorized.
* On exit, the leading M-by-M upper triangular part of A
* contains the upper triangular matrix R, and elements M+1 to
* N of the first M rows of A, with the array TAU, represent the
* unitary matrix Z as a product of M elementary reflectors.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* TAU (output) COMPLEX*16 array, dimension (M)
* The scalar factors of the elementary reflectors.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* Further Details
* ===============
*
* The factorization is obtained by Householder's method. The kth
* transformation matrix, Z( k ), whose conjugate transpose is used to
* introduce zeros into the (m - k + 1)th row of A, is given in the form
*
* Z( k ) = ( I 0 ),
* ( 0 T( k ) )
*
* where
*
* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ),
* ( 0 )
* ( z( k ) )
*
* tau is a scalar and z( k ) is an ( n - m ) element vector.
* tau and z( k ) are chosen to annihilate the elements of the kth row
* of X.
*
* The scalar tau is returned in the kth element of TAU and the vector
* u( k ) in the kth row of A, such that the elements of z( k ) are
* in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
* the upper triangular part of A.
*
* Z is given by
*
* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
*
* =====================================================================
*
go to the page top
ztzrzf
USAGE:
tau, work, info, a = NumRu::Lapack.ztzrzf( a, [:lwork => lwork, :usage => usage, :help => help])
FORTRAN MANUAL
SUBROUTINE ZTZRZF( M, N, A, LDA, TAU, WORK, LWORK, INFO )
* Purpose
* =======
*
* ZTZRZF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
* to upper triangular form by means of unitary transformations.
*
* The upper trapezoidal matrix A is factored as
*
* A = ( R 0 ) * Z,
*
* where Z is an N-by-N unitary matrix and R is an M-by-M upper
* triangular matrix.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= M.
*
* A (input/output) COMPLEX*16 array, dimension (LDA,N)
* On entry, the leading M-by-N upper trapezoidal part of the
* array A must contain the matrix to be factorized.
* On exit, the leading M-by-M upper triangular part of A
* contains the upper triangular matrix R, and elements M+1 to
* N of the first M rows of A, with the array TAU, represent the
* unitary matrix Z as a product of M elementary reflectors.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* TAU (output) COMPLEX*16 array, dimension (M)
* The scalar factors of the elementary reflectors.
*
* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,M).
* For optimum performance LWORK >= M*NB, where NB is
* the optimal blocksize.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* Further Details
* ===============
*
* Based on contributions by
* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*
* The factorization is obtained by Householder's method. The kth
* transformation matrix, Z( k ), which is used to introduce zeros into
* the ( m - k + 1 )th row of A, is given in the form
*
* Z( k ) = ( I 0 ),
* ( 0 T( k ) )
*
* where
*
* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ),
* ( 0 )
* ( z( k ) )
*
* tau is a scalar and z( k ) is an ( n - m ) element vector.
* tau and z( k ) are chosen to annihilate the elements of the kth row
* of X.
*
* The scalar tau is returned in the kth element of TAU and the vector
* u( k ) in the kth row of A, such that the elements of z( k ) are
* in a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
* the upper triangular part of A.
*
* Z is given by
*
* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ).
*
* =====================================================================
*
go to the page top
back to matrix types
back to data types