DCL:GRPH1:STPACK: Transformation Functions:Summary
An original transformation can be defined by the user when the following
entries are provided.
xx, yy = NumRu::DCL.stfusr(ux,uy) The forward transformation ux, uy = NumRu::DCL.stiusr(xx,yy) The inverse transformation stsusr Initialization of functions
The entries for forward and inverse transformation are called from the
subroutine stftrn, which is a subroutine of stftrf.
The values of ux, uy handed over to stfusr,
are values that have been processed by stfrad ¤È stfrot.
Enlargement and parallel transformation is performed by stftrn,
so only the other basic transformation functions need to be set for these functions.
Although settings exist for both forward and inverse transformation functions, only the
entry statement for the inverse function is necessary if inverse transformation is not performed.
The stsusr is called from the sgstrf, which conforms the transformation function.
For this entry, the functions of STPACK performed by sgstrf must normally be initialized.
The functions for initialization are
ststrf, ststrn, stsrad, and stsrot (in map projection).
The following program defines a log-log coordinate for common logarithm.
*--------------------------------------------------------------
* USER SUPPLIED FUNCTION
*--------------------------------------------------------------
SUBROUTINE xx, yy = NumRu::DCL.stfusr(ux,uy)
XX = LOG(UX)
YY = LOG(UY)
RETURN
*--------------------------------------------------------------
ENTRY ux, uy = NumRu::DCL.stiusr(xx,yy)
UX = EXP(XX)
UY = EXP(YY)
RETURN
END
*--------------------------------------------------------------
SUBROUTINE stsusr
vxmin, vxmax, vymin, vymax = NumRu::DCL.sgqvpt()
uxmin, uxmax, uymin, uymax = NumRu::DCL.sgqwnd()
CX = (VXMAX-VXMIN)/LOG(UXMAX/UXMIN)
CY = (VYMAX-VYMIN)/LOG(UYMAX/UYMIN)
VX0 = VXMIN - CX*LOG(UXMIN)
VY0 = VYMIN - CY*LOG(UYMIN)
NumRu::DCL.ststrf(lmapa)
NumRu::DCL.stsrad(lxdeg,lydeg)
NumRu::DCL.ststrn(itr,cxa,cya,vxoff,vyoff)
END
The following program uses the MPFMWL/MPIMWL in MATH1/MAPLIB to define a pseudo-Mollweide map projection function.
*---------------------------------------------------------------
* USER SUPPLIED FUNCTION
*---------------------------------------------------------------
SUBROUTINE xx, yy = NumRu::DCL.stfusr(ux,uy)
CALL MPFMWL(UX, UY, XX, YY)
RETURN
*---------------------------------------------------------------
ENTRY ux, uy = NumRu::DCL.stiusr(xx,yy)
CALL MPIMWL(XX, YY, UX, UY)
RETURN
END
*---------------------------------------------------------------
SUBROUTINE stsusr
LOGICAL LDEG
vxmin, vxmax, vymin, vymax = NumRu::DCL.sgqvpt()
simfac, vxoff, vyoff = NumRu::DCL.sgqsim()
plx, ply, plrot = NumRu::DCL.sgqmpl()
lpara = NumRu::DCL.sglget(cp)
IF(LDEG) THEN
CP = return_value = NumRu::DCL.rfpi()/180
ELSE
CP = 1
ENDIF
rpara = NumRu::DCL.sgrget(cp)
rpara = NumRu::DCL.sgrget(cp)
rpara = NumRu::DCL.sgrget(cp)
rpara = NumRu::DCL.sgrget(cp)
CALL SZSCLX(CP*TXMIN, CP*TXMAX)
CALL SZSCLY(CP*TYMIN, CP*TYMAX)
VX0 = (VXMAX+VXMIN)/2 + XOFF
VY0 = (VYMAX+VYMIN)/2 + YOFF
NumRu::DCL.ststrf(lmapa)
NumRu::DCL.stsrad(lxdeg,lydeg)
CALL stsrot(return_value = NumRu::DCL.rfpi()
NumRu::DCL.ststrn(itr,cxa,cya,vxoff,vyoff)
END